data_processor
Data processing module for the Mangetamain project.
This module contains the :class:DataProcessor class which is responsible
for loading raw CSV/ZIP datasets, cleaning and splitting recipe data,
merging interactions with recipe metadata and computing simple
aggregations used by the frontend (proportions, aggregates and parquet
exports).
The class uses Polars for efficient DataFrame operations and writes the
processed results into data/processed/ as parquet files.
DataProcessor ¶
Processes and transforms recipe and interaction data.
The :class:DataProcessor is a lightweight ETL helper used to build
the processed datasets consumed by the Streamlit frontend. It exposes
a small sequence of methods that can be called by a runner or CI job:
load_data: Load CSV or extract ZIP and read inputs with Polars.drop_na: Remove rows with missing or unrealistic values.split_minutes: Partition recipes into short/medium/long buckets.merge_data: Join interactions with recipe metadata.compute_proportions: Compute simple aggregates used by plots.save_data: Persist the processed tables to parquet files.
Source code in src/mangetamain/backend/data_processor.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 | |
__init__ ¶
__init__(
data_dir=Path("data/raw"),
path_interactions=Path("data/raw/RAW_interactions.csv"),
path_recipes=Path("data/raw/RAW_recipes.csv"),
)
Initialize the DataProcessor.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_dir
|
Path
|
Base directory where raw data files live (default |
Path('data/raw')
|
path_interactions
|
Path
|
Path to the interactions CSV file. |
Path('data/raw/RAW_interactions.csv')
|
path_recipes
|
Path
|
Path to the recipes CSV file. |
Path('data/raw/RAW_recipes.csv')
|
Source code in src/mangetamain/backend/data_processor.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | |
compute_proportions ¶
compute_proportions()
Compute 5-star proportions by preparation time and number of steps.
This method fills df_proportion_m and df_proportion_s which
contain the proportion of 5-star ratings aggregated by minute and
number-of-steps respectively. Results are suitable for plotting in
the frontend.
Source code in src/mangetamain/backend/data_processor.py
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | |
drop_na ¶
drop_na()
Drop missing or unrealistic records.
This method filters out interactions without textual reviews and recipes with unrealistic preparation times or zero steps. It updates the instance attributes used by downstream processing.
Source code in src/mangetamain/backend/data_processor.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | |
load_data ¶
load_data()
Load interactions and recipes data.
The method accepts either CSV files or ZIP archives containing the
CSVs. If CSV files are not present it will look for .csv.zip
siblings and extract them into data_dir.
Returns:
| Type | Description |
|---|---|
tuple[DataFrame, DataFrame]
|
A tuple |
Source code in src/mangetamain/backend/data_processor.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | |
merge_data ¶
merge_data()
Join interactions with recipes on recipe_id.
Produces total tables for each duration bucket that are used to
compute rating proportions and other aggregates.
Source code in src/mangetamain/backend/data_processor.py
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | |
process_recipes ¶
process_recipes()
Create a RecipeAnalyzer instance for NLP and visualization.
Initializes a :class:RecipeAnalyzer with the loaded data and stores
it as self.recipe_analyzer. This object provides word cloud generation,
TF-IDF analysis, and other recipe text analysis features.
Source code in src/mangetamain/backend/data_processor.py
262 263 264 265 266 267 268 269 270 271 272 273 | |
save_data ¶
save_data()
Persist processed tables to parquet files under data/processed/.
The output files are:
- processed_interactions.parquet
- processed_recipes.parquet
- total.parquet (merged interactions)
- short.parquet (merged short recipes)
- proportion_m.parquet and proportion_s.parquet
Source code in src/mangetamain/backend/data_processor.py
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 | |
split_minutes ¶
split_minutes()
Split recipes into short, medium, and long buckets based on minutes.
The thresholds are conservative and chosen to separate quick
recipes from long projects. Results are stored on the instance as
df_recipes_nna_short, df_recipes_nna_medium and
df_recipes_nna_long.
Source code in src/mangetamain/backend/data_processor.py
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | |
user_df ¶
user_df()
Compute user-level aggregates and store as df_user.
Source code in src/mangetamain/backend/data_processor.py
275 276 277 278 279 280 281 282 283 284 285 286 287 288 | |